منابع و ماخذ مقاله ایجاد و توسعه، ایالات متحده، مکان‌یابی

تک نوکلئوتیدی(SNP)
تنوع‌ها و تفاوت‌هایی که به واسطه‏ی اختلاف در یک جایگاه نوکلئوتیدی(به علت جایگزینی، حذف یا ازدیاد) اتفاق می‌افتند، با عنوان تفاوت تک نوکلئوتیدی نامیده می‏شوند. این نوع از تنوع به‌وفور در ژنوم انسان اتفاق می‏افتد به طوری که مطالعات انجام گرفته توسط کاتانو-آنولز۳۶ و گرس هوف۳۷ (۱۹۹۸) در ژنوم انسان و اسب نشان می‏دهد که در فاصله‏ی هر دویست و پنجاه تا چهارصد نوکلئوتید یک SNP وجود دارد(۱۷).
با اینکه‌SNP ها به وفور در ژنوم انسان یافت می‌شوند، ولی ایجاد و توسعه‌ی نشان‌گرهای SNP چندان آسان نیست. تهیه نشان‌گر‏های SNP شامل مراحل زیر است:
۱. تعیین ردیف DNA اطراف SNP؛
۲. تکثیر قطعه‌ای منحصر به فرد از DNA به کمک PCR به منظور غربال SNP؛
۳. شناسایی SNP که شامل مشاهده‌ی دو آلل در افراد مختلف می‌باشد؛
۴. مکان‌یابی نشان‌گر SNP و تعیین جایکاه خاص کروموزومی آن؛
۵. تعیین فراوانی دو آلل در جمعیت؛
۶. بررسی SNP در افراد و ژنوتیپ‌های مختلف(۱۷).
برخی از معایب نشاگرهای SNP
➢ SNPها به دلیل داشتن فقط دو آلل در یک جایگاه ژنی نسبت به نشان‌گر‌های چند آللی، اطلاعات کمتری را در نقشه‌های پیوستگی نشان می‌دهند؛
➢ شناسایی نشان‌گرSNP بسیار پر‌هزینه و هم‌چنین زمان‌بر است(۱۷).
۱-۳-۳-۲-۴ نشان‌گرهای مبتنی برنقاط نشانمند از ردیف(STS)
هر نشان‌گری که مبتنی بر واکنش PCR باشد و با استفاده از آغازگرهای اختصاصی (معمولا بیش از بیست نوکلئوتید) ایجاد شود، یک نقطه‌ی نشانمند از ردیف نامیده می‏شود، زیرا پیش از طراحی آغازگر، بی‏شک در یک مرحله ردیف‌یابی صورت گرفته است. نشان‌گرهایی همچون تفاوت طول قطعه‌های قابل تکثیر (ALP) و ریزماهواره‏ها از آن جهت که مستلزم ردیف‏یابی برای طراحی آغازگر به منظور تکثیر DNA در یک نقطه‌ی خاص هستند، ذیل STS دسته‌بندی می‌شوند:
-تفاوت طول قطعه‏های قابل تکثیر۳۸(ALP)
-ریز ماهواره‌ها ۳۹(۱۸).
۱-۳-۳-۲-۴-۱ تفاوت طول قطعه‏های قابل تکثیر(ALP)
ALP یکی از ساده‏ترین و سریع‏ترین نشان‌گرهای مبتنی بر PCR است. اگر ردیف باز‏های قطعه‏ای از DNA در یک موجود مشخص باشد (یا دست کم بخشی از دو انتهای آن قطعه معلوم باشد)، براساس آن می‏توان به طراحی و ساخت مصنوعی آغازگرهایی به طول بیست تا سی نوکلئوتید اقدام کرد. چنان‌چه نمونه‏های مختلف DNA توسط این آغازگرها و از طریق واکنش زنجیره‏ای پلی‌مراز تکثیر و سپس روی ژل الکتروفورز از هم جدا شوند، در صورت وجود اختلاف در طول قطعه‏ی قابل تکثیر، باندهایی به اندازه‏های مختلف تولید خواهند شد که بیانگر وقوع پدیده‏ی حذف یا اضافه۴۰ در بین نمونه‏های مورد مطالعه است. این تفاوت در اندازه‏ی قطعه‏های قابل تکثیر که جهش‏های ژنتیک را نشان می‏دهد به عنوان نشان‌گرهای ژنتیک مورد استفاده قرار می‏گیرد(۱۴).
مزایای ALP
• از نظر کاربردی در بین نشان‌گرهای DNA،یکی از سریع ترین و ارزان‌ترین‌ها است؛
• به‌کاربرد مواد پرتوزا یا بیوشیمیایی پیچیده نیاز ندارد؛
• به‌تدارک، نگهداری و کاربرد کاوشگرها نیاز ندارد؛
• بسیار اختصاصی عمل می‌کند، تکرار پذیری آن خوب است و تا حد بسیار زیادی می‌توان به نتایج آن اعتماد داشت؛
• به‌مقدار خیلی کمی از DNA نیاز است؛
• هم‌بارز بودن این نشان‌گر امکان تشخیص افراد خالص از هر یک از انواع افراد ناخالص را فراهم می‌آورد(۱۴).
معایب ALP
➢ طراحی و ساخت آغازگرها، به اطلاعات اولیه در مورد ردیف DNAژنوم مورد مطالعه نیاز دارد که با توجه به اینکه ژنوم بسیاری از موجودات به طور کامل در دسترس نیست این روش استفاده بسیار کمی دارد؛
➢ هزینه‌ی اولیه مورد نیاز به منظور تولید تعداد کافی نشان‌گر ژنتیک با توزیع مناسب در سرتاسر ژنوم بسیار زیاد و مستلزم صرف وقت است(۱۴).
۱-۳-۳-۲-۴-۲ ریزماهواره‌ها
ریزماهواره‏ها شامل واحدهای یک الی شش تایی تکرار شونده هستند که در ژنوم بیشتر یوکاریوت‏ها پراکنده‏شده‏اند. به طوری که در هر ده کیلو جفت باز از ردیف DNA دست کم یک ردیف ریزماهواره‏ای دیده می‏شود. طول ریز‌ماهواره‏ها معمولا کمتر از ۱۰۰ جفت باز بوده و توسط دو ردیف منحصر به فرد در دو طرف محدود شده‏اند. ریزماهواره‏ها به سه گروه عمده‌ی تکرارهای کامل، تکرارهای ناکامل (معمولا توسط بازهای غیرتکرارشونده قطع می‌شوند) و تکرارهای مرکب(دو یا تعداد بیشتری از واحدهای مجاور یکدیگر) تقسیم می‏شوند. تعداد تکرارها در هر واحد بسیار متفاوت است. حداقل تعداد واحد تکرار‌شونده برای ریز ماهواره‏های دو نوکلئوتیدی به ترتیب ده و هفت بار تکرار تعیین شده است(۲۱).
مزایای ریزماهواره‏ها
• کاربرد آنها و تفسیر نتایج نسبتا ساده است؛
• سیستم چند آللی(تا ۱۱ آلل) از ویژگی‌های بارز این نوع نشان‌گر است؛
• ریزماهواره‌ها بسیار متنوعند؛
• به وفور در ژنوم یوکاریوت‏ها یافت می‏شوند؛
• بیشتر ریزماهواره‏ها غیر‏عملکردی هستند؛
• همبارز هستند [۲۲].
۱-۴ فراوانی، توزیع و سازماندهی ریزماهواره‏ها در داخل ژنوم
ریزماهواره‌ها بسیار فراوان بوده و در کل ژنوم موجودات به صورت تصادفی پراکنده اند. فراوانی ریزماهواره ها در بین موجودات زنده متفاوت است. برای مثال تخمین زده شده است که ژنوم انسان به طور میانگین ده برابر بیشتر از گیاهان ریزماهواره دارد. علاوه برDNA کروموزومی تعداد زیادی ریزماهواره در DNA کلروپلاست ها نیز گزارش شده است. ب
ه کمک روش‏هایی از قبیل دورگه‏گیری در ژل، نقشه‏یابی ژنتیکی و فیزیکی و هم چنین دورگه‏گیری در محل۴۱ فلورسنت، ثابت شده است که ریزماهواره ها به طور یکنواخت در ژنوم پراکنده‏اند. اگرچه در برخی موارد می توانند به صورت مجتمع قرار گرفته باشند(۱۲).
۱-۵ مکانیسم ایجاد تنوع در طول توالی‏های تکراری
چنین فرض می‏شود که جهش در تعداد واحدهای تکرار شونده در هر یک ازDNA های تکرار شونده با یکی از دو سازوکار کراسینگ آور نامساوی۴۲(uco) یا جفت نشدن ناشی از سرخوردن در طول رشته۴۳ (خطای همانندسازی۴۴ DNA ) صورت می‏گیرد. بیشتر عقیده بر این است که ریزماهواره‏ها و ماهواره‏ها توسط سازوکار کراسینگ آور نامساوی ایجاد می‏شوند، ولی در مورد ریزماهواره‏ها برخی افراد یکی از دو سازوکار و برخی دیگر هر دو سازوکار را موثر می‏دانند(۲۳).
۱-۵-۱ کراسینگ اور نابرابر
گاهی کراسینگ اور نابرابر در داخل تکرارهای ریزماهواره‏ای بین کروموزوم های مشابه یا خواهری اتفاق می‏افتد و سبب تغییر در تعداد واحدهای تکرار شونده می‏شود.(شکل ۱-۲).کراسینگ اور نابرابر می‏تواند هم در میوز و هم میتوز اتفاق بیفتد. چنین توجیه می‏شود که وجود نواحی تکرارشونده احتمالا مانع از ردیف شدن۴۵ کامل در همولوگ یا کروموزوم‏های خواهری می‏شود. به نظرمی‏رسد که این نوترکیبی مکانیزم اصلی ایجاد تنوع مینی‏ستلایتی است(۲۳).

شکل ۱-۲ کراسینگ آور و مبادلات نابرابر بین کروماتیدهای خواهری سبب ایجاد حذف شدگی یا الحاق می‌شود(۲۳.)
۱-۵-۲ عدم جفت شدن ناشی از سرخوردن DNA در طول رشته(خطاهای همانند سازی)
گاهی DNA پلی‌مراز در طول همانند سازی در نواحی تکرار شونده‏ی ریز ماهواره‏ای سر می‏خورد و موجب تغییر در تعداد واحد تکرار شونده می‏شود. در حقیقت سر خوردن پلی‌مراز در طول نواحی تکراری موجب عدم جفت شدن کامل دو رشته‏ی DNA شده و در نهایت حلقه‌هایی در رشته‌ی الگو یا رشته‏ی جدید ایجاد می‏شود(شکل۱-۳). این امر مکانیسم اصلی به وجود آورنده‏ی چندشکلی در میکروستلایت‌هاست(۲۳).

شکل ۱-۳ متزلزل بودن پلی‌مراز حین همانندسازی DNA می‏تواند طول تکرار را به اندازه یک یا دو واحد تغییر دهد(۲۳).
اگر نتیجه‏ی همانند سازی ایجاد واحد های تکرار شونده‏ی اضافی باشد، حلقه در رشته ی جدید و اگر نتیجه‌ی همانند سازی کاهش در تعداد واحد‏های تکرار شونده باشد، حلقه در رشته‏ی الگو تشکیل خواهد شد(۲۳).
گلدستین و شلوترر۴۶ فرضیه‏ی عدم جفت شدن ناشی از سر‏خوردن در طول رشته را نسبت به فرضیه کراسینگ آور نامساوی به دلایل زیر به واقعیت نزدیکتر دانسته‏اند:
الف)‌در انسان بسیاری از تغییرات ریز ماهواره‏ای موجب تغییر در نشان‌گر های مجاور ناحیه ی ریز ماهواره‏ای نمی‌شود. بنابراین در ایجاد چنین تغییراتی نوترکیبی بی‏تاثیر است. از آنجا که جهش در فرضیه کراسینگ اور نامساوی، وابسته به نوترکیبی است، تغییرات ریز ماهواره ای و عدم تغییر نقاط مجاور با این فرضیه قابل توجیه نیست.
ب)‌نقصان در ژن‏هایی که در نوترکیبی نقش اساسی دارند تاثیری در پایداری ریز ماهواره‏ها ندارد.
ج)‌مطالعات انجام گرفته در ساکارومایسزسرویزیه۴۷ نشان می‏دهد که پایداری ریز ماهواره‏ها در سلول‏هایی که تقسیم میوز را انجام می‏دهند مشابه با یاخته ها در تقسیم میتوز است. با توجه به اینکه نوترکیبی در میوز بیشتر از میتوز است، پس اگر فرضیه‏ی کراسینگ اور نامساوی صادق باشد، باید ریز ماهواره‏ها در میوز ناپایدارتر از میتوز باشد(۲۳).
۱-۶ دامنه تنوع واحدهای تکرارشونده
دو مدل متفاوت برای توصیف دامنه‏ی تنوع تعداد واحدهای تکرار شونده‏ی ریز ماهواره‏ای وجود دارد:
۱.مدل جهش گام به گام۴۸
۲. مدل آللی نا محدود۴۹
۱-۶-۱ مدل جهش گام به گام
اگر فرض کنیم در ریزماهواره‏ها یک گام معادل تغییر در یک واحد تکرار شونده باشد، بنابر این مدل ریز ماهواره‏ها از نظر اندازه فقط در تعداد محدودی گام تفاوت دارند، به‌طوری که هر گام از گام بعدی به وسیله‏ی یک واحد تکرار شونده جدا می‏شود. در این مدل چنین فرض می‏شود که بسیاری از جهش‏های با فراوانی زیاد، فقط ریزماهواره‏ها را در یک گام یا دو گام‌(در یک زمان) تغییر می‏دهند. طرفداران این نظریه معتقدند که در بیشتر آزمایش‏ها، بیشترین تغییر در ساختار ریزماهواره‏ها مربوط به افزایش یا کاهش در یک واحد تکرار شونده بوده است(۱۰).
۱-۶-۲ مدل آللی نا‏محدود
بر اساس این مدل هیچگونه محدودیتی در اندازه‏ی پتانسیل ریزماهواره‏ها وجود ندارد. از این رو تعداد نا محدودی از انتخاب‏ها می‌توانند اتفاق بیفتند که تمامی آنها احتمال یکسان را داشته باشند.
بسیاری از پژوهشگران معتقدند که ترکیبی از این دو مدل(عموما تغییر در یک یا دو واحد تکرار شونده و به مقدار کمتر تغییرات بزرگتر) بهتر می‌تواند تغییرات جهشی در ریزماهواره‏ها را توضیح دهد(۱۰).
۱-۷ مارکرهای STR
توالی‏های تکراری کوتاه پشت سر هم(STRS) ، توالی‏های تکرارشونده کوتاه با طول ۱-۱۳ نوکلئوتید هستند که به شکل سر به دم قرار می‏گیرند. در ژنوم انسان، معمول‏ترینSTR ، توالی دو نوکلئوتیدی [CA]n است،که در این فرمول n تعداد تکرارهاست که معمولا بین ۵ تا ۲۰ بار متغیر است(۲۴).
۱-۸ کاربرد مارکرهای STR
مارکرهایSTR کاربردهای فراوانی دارد که از مهمترین آنها تعیین هویت افراد است(۲۵). تعیین هویت در موارد بسیاری کاربرد دارد که از جمله‏ی آنها می‌توان به موارد زیر اشاره کرد:
۱- مطالعات شجره‏ای و رو
ابط فامیلی
۲- شناسایی هویت قربانیان حوادث
۳- تعیین هویت در موارد جنایی
۴- ردیابی تاریخ بشر و مطالعات جمعیتی(۲۶).
۱-۸-۱ مطالعات شجره‏ای و روابط فامیلی
از مارکرهایSTR می توان برای بررسی خویشاوندی دو یا چند نفر استفاده کرد. این نوع مطالعه را آنالیز فامیلی۵۰ می‌گویند و کاربرد متداول آن در بررسی رابطه والدین ـ فرزندی است(۲۷).
هرساله بیش از ۳۰۰۰۰۰ مورد تست ابویت به منظور تعیین رابطه پدر فرزندی در ایالات متحده انجام می‏شود. این تست‏ها معمولا شامل یک مادر، یک کودک و یک یا چند پدر مدعی است. همانطور که می‏دانیم هر فرد دارای دو سری آلل می‏باشد که یک سری آن را از پدر و سری دیگر را از مادر دریافت کرده است. بدین منظور آلل‏های پدر و فرزند برای یافتن تعدادی از جایگاه‏هایSTR مورد بررسی قرار می‏گیرند. اساس این تست بر این است که در فقدان جهش، آلل‏های کودک باید مطابقت کاملی با آلل‏های پدری و مادری داشته باشد(۲۸-۲۹-۳۰).

شکل ۱-۴ آلل‏های فرزندان مجموعه‏ای از آلل‏های والدین آنها می‏باشد(۲۶).
علاوه بر این بسیاری از افراد برای شناسایی اقوام خود از مارکرهایSTR استفاده می‏کنند. برای مثال با آنالیز STR های کروموزومY می توان نسبت فامیلی میان مردان یک خانواده را مشخص کرد. زیرا همان‌طور که می‏دانید کروموزومY توارث پدری دارد و از پدر به تمام پسران به ارث می‌رسد. پس طبیعی است که تمام پسران خانواده در همه‏ی نسل‌هاSTR های یکسانی روی کروموزوم Y خود داشته باشند. آزمایشی که بدین منظور انجام می‏گیرد آزمایش Y-filer نامیده می‏شود. به کمک این آزمایش می‏توان روابط میان برادرها، عمو و برادرزاده و… را مشخص نمود(۲۷-۳۱).
۱-۸-۲ شناسایی هویت قربانیان حوادث
فجایع بزرگ، طبیعی یا بدست بشر، می‌تواند جان افراد بسیاری را بگیرد، تست‏‏‏هایی که برای شناسایی قربانیان حادثه انجام می‏شود، تست تعیین هویت قربانیان حادثه نامیده می‏شود. از این تست در مواردی مانند سقوط هواپیما ،آتش سوزی‏های بزرگ و حوادث تروریستی استفاده می‏شود. در این قبیل حوادث با استفاده از اسامی افراد، خانواده‏های آنها شناسایی می‏شوند و پس از مراجعه‏ی خانواده‌ها، از اعضای خانواده شامل پدر، مادر، فرزند، خواهر و برادر نمونه‏ی DNA گرفته می‏شود و نواحی STR آنها بررسی می‏شود. پس از این مرحله با استفاده از DNAبه دست آمده از بقایای اجساد پروفایل ژنتیکی آنها تهیه می‏شود و در نهایت با مقایسه‏ی پروفایل‏های تهیه شده هویت قربانیان شناسایی می‏شود(۳۲).

۱-۸-۳ تعیین هویت در موارد جنایی
تعیین هویت در موارد جنایی شامل دو بخش می‏باشد:
شناسایی افراد مجهول الهویه
ردیابی مجرمین(۲۵).
۱-۸-۳-۱ شناسایی افراد مجهول الهویه
هر ساله میلیون‏ها نفر در سراسر جهان تحت شرایط مشکوکی مفقود می‏شوند. بسیاری از این افراد قربانی فعالیت‏های مجرمانه از قبیل تجاوز و قتل می‏شوند و هویت آنها ناشناس باقی می‏ماند. در این موارد هم می‏توان از مارکرهای ژنتیکی موجود در DNA افراد برای تعیین هویت آنها استفاده کرد(۳۳).
سه دسته نمونه در مورد افراد قربانی وجود دارد:
۱-نمونه مستقیم از فرد قربانی
۲-نمونه خانواده قربانی
۳-نمونه‌های ناشناس باقی مانده از انسان در صحنه‏ی جرم
این نمونه‏ی باقی مانده می‏تواند استخوان، دندان، بافت، تار مو، لکه ی خون و یا هر چیز دیگری باشد(۳۴).
۱-۸-۳-۲ ردیابی مجرمین
علاوه بر این می‏توان از آنالیز DNA برای ردیابی و شناسایی مجرمین استفاده کرد. این که

متن کامل پایان نامه ها در سایت sabzfile.com

پاسخی بگذارید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *