ر انسان و روز ۸-۶ گاو و گوسفند بلاستوسیست از زونا آزاد میگردد که به آن جازه رشد بیشتر، دستیابی به مواد مغذی و ترشحات رحمی و لانه گزینی میدهد. هرگونه اختلال در تنظیم فرایند هچ سبب میشود که لانهگزینی رخ ندهد و در نتیجه ناباروری ایجاد گردد [۱۲۴]. کنترل فرایند هچ و هضم زوناپلوسیدا توسط بیومولکولها و فاکتورهای سلولی مختلف صورت میگیرد [۱۳۹]. اطلاعات کمی در مورد سازوکار این پدید? تکوینی مهم وجود دارد. در بلاستوسیستی که به طور پیشرونده در حال اتساع است، فشار هیدروستاتیک سبب ایجاد یک شکاف کوچک در زوناپلوسیدا میشود، علاوه بر آن هم بلاستوسیست و هم اندومتریوم فاکتورهایی ترشح میکنند که در فرایند هچ دخالت دارند [۵۷]. همچنین در بلاستوسیست آماده هچ زواید تروفکتودرم۸۱ TEPs ظاهر میشود. TEPs به همراه چندین فاکتور تنظیمگر سلولی و مولکولی مربوط به هچ سبب وقوع هچ می?شوند (شکل۲-۳).

نشان داده شده است که TEPs زونا را در قطب غیررویانی۸۲ سوراخ میکند و طی سوراخ شدن، زونا حرکات موجی از خود نشان می دهد [۱۴۷]. همچنین از سلولهای ترفکتودرم زوایدی که منشا آن?ها اکتین اسکلت سلولی است خارج می?شود که فیلوپودیا۸۳ نامیده می?شود که به توده سلولی داخلی وارد میشود و در انتقال پیام سلولی نقش دارد [۶۲]. TEPs و فیلوپودیا به همراه تنظیمگرهای مولکولی هچ باعث آزادسازی بلاستوسیست از حصار زونا میشوند. تنظیمگرهای مولکولی که هچ را تحت تاثیر قرار میدهند، یکی از مهمترین جنبههای فرایند هچ است. فاکتورهای امبریوتروفیک۸۴ مثل فاکتورهای رشد، سیتوکینها، فاکتورهای نسخهبرداری، سیستئین پروتئازها نمونههایی از این تنظیمگرها هستند [۱۳۹]. مطالعات نشان داده است که EGF85، EGF متصل شونده به هپارین، ۸۶TGF-? و ۸۷LIF، سبب تسریع هچ میشود [۱۳۹]. مهار رسپتورهای آلفای استروژنی (ER-?) توسط آنتاگونیست ICI 182,780، نشان داد که هچ شدن بلاستوسیست همستر بهطور برگشتپذیری مهار میشود. این مطالعه نشان می دهد که ER-? میتواند در فرایند هچ نقش تنظیمی داشته باشد [۱۴۷]. همچنین دیده شده است که مهار COX-288 و NF?B89 به شدت فرایند هچ را تحت تاثیر قرار میدهد [۱۴۷]. در حمایت از این یافته دیده شد که PGI2 که محصول فعالیت COX-2 است برای هچ شدن رویان موش بسیار حیاتی است [۲۵]. گروههای مختلفی از پروتئازها (مثل سرین و سیستئین یا متالو پروتئاز) بسته به گونه، در فرایند هچ دخالت دارند [۶۴]. اختلال در فعالیت پروتئازها منجر به عدم آبستنی میشود. نشان داده شده است که مهارکننده?های پروتئازهای سیستئینی مانند آنتیپاین۹۰، لئوپپتین۹۱، پی- هیدرومرسیوری بنزوات۹۲ مانع از هچ شدن بلاستوسیستهای کشت شده?ی همستر در in vitro میشود بدون آن?که تکوین رویانها را تا مرحله بلاستوسیست تحت تاثیر قرار دهند [۶۴]. مطالعات اخیر نشان دادهاند که کاتپسینهای مشتق شده از بلاستوسیست در هچ و هضم زونا نقش دارند [۶۴]. نشان داده شدهاست که زونای موش حساسیت کمتری نسبت به همستر به هضم توسط پروتئازها دارد، که نشان میدهد ممکن است ترکیبات زونا و یا ساختار آن بین گونه?ها متفاوت باشد [۴۲]. شناخت بیشتر سازوکار فرایند هچ در پستانداران نیازمند مطالعات بیشتر است. نتایج ارزیابی پروتئوم و ترانسکریپتوم رویانهای در حال هچ در آینده میتواند شناخت ما را از سازوکار پدیده?ی هچ بیشتر کند.
۲-۷- فعال شدن ژنوم رویانی
دوره پس از لقاح رویان پستانداران با چندین فرایند انتقالی مهم تکوینی همراه است. اولین و شاید مهمترین آن?ها فعال شدن ژنوم رویانی۹۳ است، که در آن ترانسکریپتهای ژنوم رویانی بیان میشود و جایگزین ترانسکریپتهای مادری میگردد. در این مرحله محتوای ژنوم جنین فعال گشته و با تکیه بر mRNAs های حاصل از ترجمه ژنوم خودی به تکوین خود ادامه میدهد. هدف این تغییر بزرگ تبدیل تخمک به یک بلاستومر توتیپتنت۹۴ است. در گونهها و حتی در نژادهای مختلف، این رخداد در مراحل مختلف تکوین (چهارمین گامه تقسیم سلولی در گاو، پنجمین گامه در خرگوش، گامه سوم تا چهارم در انسان، دومین گامه در موش و چهارمین گامه در گربه) اتفاق می?افتد.
mRNA مادری و پروتئین ذخیره درون اووسیت با گذشت زمان کاهش مییابد به طوریکه نهایتاً در طی سومین تا چهارمین گامه سلولی این ذخایر مادری کاهش خواهد یافت. اووسیت توانمند بایستی حاوی مقادیر
کافی mRNA مورد نیاز برای تکوین جنینی تا چهارمین و پنجمین گامه سلولی باشد. در این مرحله است که فعال شدن اصلی ژنوم جنین اتفاق افتاده و فعالیت نسخه?برداری افزایش و سنتز پروتئین آغاز می?شود (شکل۲-۴). [۶۵] مطالعات گسترده اخیر حاکی از نقش حیاتی توالی?های خاص ژنوم جنین در القا فعال?سازی سرتاسری ژنوم جنین میباشد. براین اساس ژنهای مختلفی در گونههای مختلف پستانداران تشخیص داده شدهاند به طوری?که اکنون ژنهای زیادی کاندید اکتیواسیون ژنوم جنینی شناخته شدهاند.

۲-۸- متابولیسم رویان
چرخه کربس منبع اصلی تامین انرژی رویان از مرحله زایگوت تا مرحله قبل از لانهگزینی است. تا قبل از تشکیل بلاستوسیست میسر گلیکولیز در رویان فعالیت خیلی کمی دارد اما در شروع تشکیل بلاستوسیست توانایی گلیولیز به شدت افزایش می?یابد. مصرف اکسیژن نیز در مراحل اولیه تقسیم رویانی پایین است و با تشکیل بلاستوسیست بالا می?رود تا ATP لازم برای پمپ /k+ ATPase Na+ برای تشکیل حفره بلاستوسل و ساخت پروتئین برای رویان در حال رشد طی چرخه کربس تامین شود. در مرحله بلاستوسیست فرایند بیهوازی گلیکول
یز به راه میافتد تا نیاز متابولیکی بلاستوسیست در حال رشد و تشکیل حفره بلاستوسل را فراهم سازد. این موضوع به کمک برخی پروتئینهای غشایی سرتاسری یا اینتگرال که ناقل?های گلوگز۹۵ ((GLUTs هستند انجام میگیرد. رویان در روزهای اولیه بدون نیاز به گلوکز قادر است تقسیمات خود را ادامه دهد، اما بعد از مرحله مورولا به مقدار جزیی گلوکز نیاز دارد. گلوگز علاوه بر این?که به عنوان سوبسترای انرژی به کار میرود، اکسیداسیون آن در مسیر پنتوز فسفات نیز سبب تولید قند ۵ کربنه ریبوز میشود که پیشساز ساخت DNA و RNA در رویان میباشد. گزارش شده است که وجود مقدار جزیی گلوکز برای بیان GLUT3 لازم است. GLUT3 در تشکیل بلاستوسیست نقش دارد. همچنین گزارش شده است که گلوکز برای بیان ناقلهای منوکربوکسیلات [۱۳۱] که مسئول انتقال جفت شده پروتون با یک آنیون مثل پیروات و لاکتات است و در تنظیم ۹۶PHi نقش دارند لازم است [۴۹]. گلوکز علاوه بر سوبسترای انرژی به عنوان یک عامل در سیگنالینگ سلولی نقش ایفا می کند [۱۳۳].
بیانGLUT1 از مرحله زیگوت تا مرحله بلاستوسیست و بیان GLUT3,4 از مرحله ۸ سلولی تا مرحله بلاستوسیست رخ می?دهد. GLUT4 بیان نمی?شود و GLUT8 در مرحله بلاستوسیست بیان میشود. مطالعات نشان داده است که GLUT8 در موش پس از تحریک با انسولین تنظیم افزایشی۹۷ پیدا میکند، اما تحقیقات جدیدتر نشان دادهاند که در غیاب GLUT8 تکوین رویانی به طور طبیعی رخ میدهد. فعالیت متابولیکی رویان میتواند پیشبینی کنند? قدرت زندهمانی آن پس از انتقال به گیرندهها باشد. شرایط مختلف کشت رویان، فعالیت متابولیکی آنرا تحت تاثیر قرار میدهد. میزان جذب گلوکز و متابولیسم آن در رویان با قدرت تکوین آن ارتباط دارد و به احتیاجات رویان مربوط میشود [۳۴،۱۳۴]. نیاز به انرژی برای فعالیت پمپ Na+/K+ ATPase در شروع تشکیل بلاستوسیت نمونهای از این احتیاجات است[۳۳]. دیده شده است که شرایط کشت میتواند توانایی رویان را برای متابولیسم نمودن گلوکز تحت تاثیر قرار دهد[۷۶،۱۴۱،۴]. در رویانهایی که هنگام همکشتی با سلولهای اپیتلیال اویداکت تولید میشوند میزان متابولیسم گلوکز بالاست اما تعداد سلولهای رویانی کمتری دارند و زمان تکوین در آنها به تاخیر میافتد. پیشنهاد شده است که مصرف میزان بالای گلوکز ممکن است به زنده مانی کم رویان مربوط شود[۷۶]. همچنین دیده شده است که وجود سرم در محیط کشت رویان سبب افزایش فعالیت گیکولیتیک رویان میشود و رویانها ظاهری تیره و گرانوله دارند [۱۵۶].
۲-۹- نقش آلدوسترون در بیان پمپ Na+/K+ ATpase
در یک مطالعه، الیورا (Olivera et al., 2000) به بررسی تأثیر آلدوسترون بر پمپ Na+/K+/ATPase و متعاقباً کاهش ادم ریوی موش های صحرایی پرداخت. بدین ترتیب پس از جدا سازی و تخلیص سلول های آلوئولی
تیپ II، آنها را به مدت ۳، ۶، ۱۲ و ۲۴ ساعت در غیاب و حضور آلدوسترون به میزانnM 300 کشت داد. نتایج این مطالعه نشان داد آلدوسترون موجب افزایش یکنواخت مقادیر mRNA مربوط به تحت واحد ?۱ پمپ Na+/K+/ATPase، نیز مقادیر پروتیین Na+/K+/ATPase و نیز افزایش سلول های آلوئولی تیپ II در زمان های ۱۲ و ۲۴ ساعت پس از کشت می گردد ]۱۱۶[.
افزایش فعالیت Na+/K+/ATPase احتمالاً ناشی از تغییر در فعالیت پمپ های Na+/K+/ATPase موجود، به کارگیری یا تغییر موقعیت پمپ های مذکور از منابع داخل سلولی به غشای بازولترال و یا متعاقب نسخه برداری یا ترجمه که موجب افزایش تعداد پمپ های فعال Na+/K+/ATPase بر روی غشای پلاسمایی سلول می گردد، می باشد ]۸،۴۷[. در این مطالعه آلدوسترون هیچ تأثیری بر روی مقادیر mRNA تحت واحد ۱? پمپ Na+/K+/ATPase نداشت، در حالی که مقادیر پروتیین های تحت واحد مذکور را در غشای بازولترال سلول ها افزایش داد. بدین ترتیب به نظر می رسد آلدوسترون به منظور افزایش فعالیت پمپ Na+/K+/ATPase، از مکانیسم های متفاوتی جهت تنظیم تحت واحدهای ? و ? استفاده می نماید؛ به عنوان مثال آلدوسترون میزان نسخه برداری و ترجمه تحت واحد ? را تغییر می دهد، در حالی که احتمالاً در مورد تحت واحد ?، از به کار گیری منابع داخل سلولی برای غشای بازولترال استفاده می نماید ]۸،۴۷[.
در مطالعات دیگر نشان داده شده است که تأثیر آلدوسترون بر مقادیر mRNA تحت واحدهای ? و ? در سلول های کشت داده شده مختلف، متفاوت است؛ به عنوان مثال مواجهه سلول های قلبی موش صحرایی با آلدوسترون، موجب افزایش سه برابری در مقادیر mRNA تحت واحد ? در مدت ۶ ساعت گردید ]۵۸[. در مطالعه دیگر در سلول های کلیوی کشت داده شده (A6)، آلدوسترون موجب افزایش ۵/۲ برابری در مقادیر mRNA تحت واحد ۱? گردید، لیکن هیچ تأثیری بر مقادیر mRNA تحت واحد ۱? پس از ۳ ساعت مواجهه نداشت ]۹۰[.
در مطالعه ای که وری (Verrey et al., 1989) به منظور بررسی تأثیر آلدوسترون بر روی نسخه برداری ژن مربوط به Na+/K+/ATPase در سلول های کلیوی انجام داد، نشان داد که افزودن nM300 آلدوسترون در محیط کشت سلول های A6 کلیوی در طول ۶ ساعت موجب افزایش ۴ برابری در مقادیر mRNA تحت واحد ۱? و نیز افزایش دو برابری در مقادیر mRNA تحت واحد ۱? پمپ مذکور گردید. در این مطالعه پیشنهاد شده است که احتمالاً آلدوسترون با تأثیر مستقیم بر روی ترکیب هورمون-گیرنده و تحریک پروموتر ژن Na+/K+/ATPase موجب افزایش نسخه برداری و مقادیر mRNA ژن مذکور می گردد ]۱۶۵[.
در مطالعه دیگری اگوچی (Oguchi et al., 1993) به بررسی تأثیر آلدوسترون بر بیان ژن Na+/K+/ATPase در سلول های عضلات صاف عروق پرداخت. نتایج این مطالعه بیانگر افزایش ۳/۲ برابری در مقادیر تحت واحد ۱? و افزایش ۷/۴ برابری در مقادیر mRNA تحت واحد ۱? پس از ۲۴ ساعت کشت گردید که احتمالاً بیانگر تحریک بیان ژن Na+/K+/ATPase در محیط کشت سلول
می باشد ]۱۱۵[.

فصل سوم
مواد و روش کار

انجام این مطالعه مستلزم تولید جنین‌های حاصل از لقاح خارج رحمی (IVF) به منظور اخذ بلاستوسیست از آن‌ها و بررسی تأثیر آلدوسترون بر روی تکامل جنینها بعد از مورولا تا بلاستوسیست و بررسی بیان پروتیین Na+/K+ ATpase میباشد.
جمع‌آوری تخمدان‌ها از کشتارگاه و استحصال تخمک‌ها از مایع فولیکولی
بلوغ آزمایشگاهی تخمک‌ها (IVM)
آماده سازی اسپرم به منظور IVF
آماده سازی COC ها به منظور IVF
لقاح داخل آزمایشگاهی (IVF)
کشت داخل آزمایشگاهی جنین ها (IVC)
تازه کردن محیط کشت جنین ها (refresh)
3-1- تولید جنین های حاصل از لقاح خارج رحمی (IVF)
3-1-1- جمع‌آوری تخمدان‌ها از کشتارگاه و استحصال تخمک‌ها از مایع فولیکولی
پس از جمع‌آوری تخمدان‌ها از گوسفندهای کشتار شده درکشتارگاه، ظرف مدتی کمتر از ۳ ساعت تخمدان‌ها با استفاده از فلاسک حاوی سرم فیزیولوژی به همراه آنتی‌بیوتیک (mg/ml strep200 IU/ml pen & 0.2) در دمای ۳۰-۲۰ درجه سانتی‌گراد به آزمایشگاه منتقل می‌شوند. در آزمایشگاه تخمدان‌ها چند بار با آب شهری با همان درجهای که تخمدانها دارند شستشو داده شده و سپس داخل بشر حاوی سرم فیزیولوژی ریخته شده و در بن ماری ۳۰ درجه سانتی‌گراد قرار می‌گیرند. اووسیتها از فولیکولهای آنترال با قطر ۶-۲ میلیمتر، به روش آسپیره کردن، با کمک پمپ خلاء، و با استفاده از سوزن شماره ۲۱ گرفته شد. محتویات فولیکولهای آسپیره شده درون لوله فالکون ۵۰ میلیلیتری که حاوی مقداری محیط آسپیراسیون گرم بود جمعآوری میشد، تمام مراحل استحصال اووسیتها از فولیکول در داخل بنماری با ۳۰ درجهسانتیگراد انجام گرفت. مایع آسپیره شده ۱۰ دقیقه جهت رسوب ذرات، بی‌حرکت گذاشته شده سپس رسوب ته لوله با پیپت پاستور کشیده و داخل پتری دیش استریل و خط‌کشی شده ریخته می‌شود.
Aspiration medium
H-TCM
100 IU/ml heparin
10% FBS
در مرحله‌ی بعد زیر استریومیکروسکوپ اقدام به جداسازی تخمک‌های با کیفیت مطلوب (تخمک‌های با حداقل سه لایه سلول کومولوس متراکم و سیتوپلاسم گرانوله یکنواخت) نموده و سپس این تخمک‌ها به قطره شستشو انتقال داده می‌شوند و ۴ بار درون قطرههای ۳۰۰ میکرولیتری محیط شستشوی اووسیت شستشو داده میشدند.
COC washing medium
H-TCM
%10FBS

3-1-2- بلوغ آزمایشگاهی تخمک‌ها (IVM)
تخمک‌ها بعد از ۴ بار شستشو به قطرات ۵۰ میکرولیتری محیط بلوغ منتقل (۱۰تخمک در هر قطره) و در انکوباتور ۹ درصد CO2، با دمای ۳۹ درجه سانتی‌گراد و رطوبت حداکثر برای مدت ۲۴-۲۲ ساعت به منظور انجام روند بلوغ آزمایشگاهی انکوبه می‌شوند.
Maturation medium
B-TCM 199
10%FBS
0.1 IU/ml FSH

3-1-3- لقاح در شرایط آزمایشگاهی (IVF)
3-1-3-1- آماده سازی تخمکهای بالغ شده برای لقاح
پتریدیش مربوط به کشت تخمک ها، ۲۴ ساعت پس از کشت، از انکوباتور خارج و توسط استریومیکروسکوپ بررسی میشد. پراکندگی سلولهای کومولوس معیار بلوغ موفق در نظر گرفته میشد. برای آماده سازی تخمکهای بالغ شده جهت انجام IVF، تخمکها

متن کامل پایان نامه ها در سایت sabzfile.com

Leave a comment

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *